
CS 207 Digital Logic - Spring 2019

Lab 4 - Behavioral Modeling

Monday, Mar. 11, 2019

1 Experiment A

Behavioral models in Verilog contain procedural statements, which control the
simulation and manipulate variables of the data types. These all statements are
contained within the procedures. Each of the procedure has an activity flow
associated with it.

During simulation of behavioral model, all the flows defined by the always

and initial statements start together at simulation time 0. The initial state-
ments are executed once, and the always statements are executed repetitively.
For example, in the following model,

initial example.v

1 module initial_example ();

2 reg clk ,reset ,enable ,data;

3

4 initial begin

5 clk = 0;

6 reset = 0;

7 enable = 0;

8 data = 0;

9 end

10

11 endmodule

the initial block execution starts at time 0, which just executed all the state-
ments within begin and end statement, without waiting.

always example.v

1 module always_example ();

2 reg clk ,reset ,enable ,q_in ,data;

3

4 always @ (posedge clk)

5 if (reset) begin

6 data <= 0;

7 end else if (enable) begin

1

8 data <= q_in;

9 end

10

11 endmodule

In an always block, when the trigger event occurs (here positive edge of clock),
the code inside begin and end is executed; then once again the always block
waits for next event triggering. This process of waiting and executing on event
is repeated till simulation stops.

If a procedure block contains more than one statement, those statements
must be enclosed within either a sequential begin-end block or a parallel fork-
join block. Try the following code and see what’s the difference:

initial begin end.v

1 module initial_begin_end ();

2 reg clk ,reset ,enable ,data;

3

4 initial begin

5 $monitor(

6 "#%g clk=%b reset=%b enable =%b data=%b",

7 $time , clk , reset , enable , data);

8 #1 clk = 0;

9 #10 reset = 0;

10 #5 enable = 0;

11 #3 data = 0;

12 #1 $finish;

13 end

14

15 endmodule

initial fork join.v

1 module initial_fork_join ();

2 reg clk ,reset ,enable ,data;

3

4 initial begin

5 $monitor("#%g clk=%b reset =%b enable =%b data=%b",

6 $time , clk , reset , enable , data);

7 fork

8 #1 clk = 0;

9 #10 reset = 0;

10 #5 enable = 0;

11 #3 data = 0;

12 join

13 #1 $display ("#%g Terminating simulation", $time);

14 $finish;

15 end

16

17 endmodule

To summarize, the begin-end keywords:

2

• Group several statements together.

• Cause the statements to be evaluated sequentially (one at a time)

– Any timing within the sequential groups is relative to the previous
statement.

– Delays in the sequence accumulate (each delay is added to the pre-
vious delay)

– Block finishes after the last statement in the block.

The fork-join keywords:

• Group several statements together.

• Cause the statements to be evaluated in parallel (all at the same time).

– Timing within parallel group is absolute to the beginning of the
group.

– Block finishes after the last statement completes (Statement with
highest delay, it can be the first statement in the block).

Save the command line output in initial begin end.log and initial fork

join.log, respectively. Assignment 1 requires the output files.

Assignment

2 Experiment B

Verilog has two ways of value assignment, blocking and nonblocking. Blocking
assignments are executed in the order they are coded, hence they are sequential.
Since they block the execution of next statement, till the current statement is
executed, they are called blocking assignments. Assignment are made with “=”
symbol. Example: a = b.

Nonblocking assignments are executed in parallel. Since the execution of
next statement is not blocked due to execution of current statement, they are
called nonblocking statement. Assignments are made with “<=” symbol. Ex-
ample a <= b.

blocking nonblocking.v

1 module blocking_nonblocking ();

2

3 reg a,b,c,d;

4 // Blocking Assignment

5 initial begin

6 #10 a = 0;

7 #11 a = 1;

3

8 #12 a = 0;

9 #13 a = 1;

10 end

11

12 initial begin

13 #10 b <= 0;

14 #11 b <= 1;

15 #12 b <= 0;

16 #13 b <= 1;

17 end

18

19 initial begin

20 c = #10 0;

21 c = #11 1;

22 c = #12 0;

23 c = #13 1;

24 end

25

26 initial begin

27 d <= #10 0;

28 d <= #11 1;

29 d <= #12 0;

30 d <= #13 1;

31 end

32

33 initial begin

34 $monitor("#%g A = %b B = %b C = %b D = %b",$time , a, b, c,

↪→ d);

35 #50 $finish;

36 end

37

38 endmodule

Save the command line output in blocking nonblocking.log. Assignment
1 requires the output file.

Assignment

3 Experiment C

3.1 The Conditional Statement if-else

The if-else statement controls the execution of other statements. In program-
ming language like c, if-else controls the flow of program. When more than
one statement needs to be executed for an if condition, we need to use begin

and end as seen in earlier examples.

4

nested if.v

1 module nested_if ();

2

3 reg [3:0] counter;

4 reg clk ,reset ,enable , up_en , down_en;

5

6 always @ (posedge clk)

7 // If reset is asserted

8 if (reset == 1’b0) begin

9 counter <= 4’b0000;

10 // If counter is enable and up count is asserted

11 end else if (enable == 1’b1 && up_en == 1’b1) begin

12 counter <= counter + 1’b1;

13 // If counter is enable and down count is asserted

14 end else if (enable == 1’b1 && down_en == 1’b1) begin

15 counter <= counter - 1’b1;

16 // If counting is disabled

17 end else begin

18 counter <= counter; // Redundant code

19 end

20

21 // Testbench code

22 initial begin

23 $monitor ("#%g reset =%b enable =%b up=%b down=%b count =%b",

24 $time , reset , enable , up_en , down_en ,counter);

25 $display("#%g Driving all inputs to know state",$time);

26 clk = 0;

27 reset = 0;

28 enable = 0;

29 up_en = 0;

30 down_en = 0;

31 #3 reset = 1;

32 $display("#%g De-Asserting reset",$time);

33 #4 enable = 1;

34 $display("#%g De-Asserting reset",$time);

35 #4 up_en = 1;

36 $display("#%g Putting counter in up count mode",$time);

37 #10 up_en = 0;

38 down_en = 1;

39 $display("#%g Putting counter in down count mode",$time);

40 #8 $finish;

41 end

42

43 always #1 clk = ~clk;

44

45 endmodule

5

Save the command line output in nested if.log. Assignment 1 requires the
output file.

Assignment

3.2 The Case Statement

The case statement compares an expression to a series of cases and executes
the statement or statement group associated with the first matching case. Case
statement supports single or multiple statements, and group multiple statements
using begin and end keywords.

mux.v

1 module mux (a,b,c,d,sel ,y);

2 input a, b, c, d;

3 input [1:0] sel;

4 output y;

5

6 reg y;

7

8 always @ (a or b or c or d or sel)

9 case (sel)

10 0 : y = a;

11 1 : y = b;

12 2 : y = c;

13 3 : y = d;

14 2’bxx ,2’bzz : $display("Error in SEL");

15 default : $display("Error in SEL");

16 endcase

17

18 endmodule

Special versions of the case statement allow the x ad z logic values to be
used as “don’t care”:

• casez: Treats z as don’t care.

• casex: Treats x and z as don’t care.

casez example.v

1 module casez_example ();

2 reg [3:0] opcode;

3 reg [1:0] a,b,c;

4 reg [1:0] out;

5

6 always @ (opcode or a or b or c)

7 casez(opcode)

8 4’b1zzx : begin // Don ’t care about lower 2:1 bit , bit 0

↪→ match with x

6

9 out = a;

10 $display("#%g 4’b1zzx is selected , opcode %b",

↪→ $time ,opcode);

11 end

12 4’b01?? : begin

13 out = b; // bit 1:0 is don ’t care

14 $display("#%g 4’b01?? is selected , opcode %b",

↪→ $time ,opcode);

15 end

16 4’b001? : begin // bit 0 is don ’t care

17 out = c;

18 $display("#%g 4’b001? is selected , opcode %b",

↪→ $time ,opcode);

19 end

20 default : begin

21 $display("#%g default is selected , opcode %b",

↪→ $time ,opcode);

22 end

23 endcase

24

25 // Testbench code goes here

26 always #2 a = $random;

27 always #2 b = $random;

28 always #2 c = $random;

29

30 initial begin

31 opcode = 0;

32 #2 opcode = 4’b101x;

33 #2 opcode = 4’b0101;

34 #2 opcode = 4’b0010;

35 #2 opcode = 4’b0000;

36 #2 $finish;

37 end

38

39 endmodule

Save the command line output in casez example.log. Assignment 1 requires
the output file.

Assignment

The following example shows the difference among case, casex, and casez:

case compare.v

1 module case_compare;

2

3 reg sel;

4

5 initial begin

7

6 #1 $display ("\n Driving 0");

7 sel = 0;

8 #1 $display ("\n Driving 1");

9 sel = 1;

10 #1 $display ("\n Driving x");

11 sel = 1’bx;

12 #1 $display ("\n Driving z");

13 sel = 1’bz;

14 #1 $finish;

15 end

16

17 always @ (sel)

18 case (sel)

19 1’b0 : $display("Normal : Logic 0 on sel");

20 1’b1 : $display("Normal : Logic 1 on sel");

21 1’bx : $display("Normal : Logic x on sel");

22 1’bz : $display("Normal : Logic z on sel");

23 endcase

24

25 always @ (sel)

26 casex (sel)

27 1’b0 : $display("CASEX : Logic 0 on sel");

28 1’b1 : $display("CASEX : Logic 1 on sel");

29 1’bx : $display("CASEX : Logic x on sel");

30 1’bz : $display("CASEX : Logic z on sel");

31 endcase

32

33 always @ (sel)

34 casez (sel)

35 1’b0 : $display("CASEZ : Logic 0 on sel");

36 1’b1 : $display("CASEZ : Logic 1 on sel");

37 1’bx : $display("CASEZ : Logic x on sel");

38 1’bz : $display("CASEZ : Logic z on sel");

39 endcase

40

41 endmodule

4 Experiment D

In Verilog, looping statements appear inside procedural blocks only. It has four
looping statements, i.e., forever, repeat, while, for.

4.1 The forever Statement

The forever loop executes continually, the loop never ends. Normally we use
forever statements in initial blocks.

One should be very careful in using a forever statement: if no timing con-
struct is present in the forever statement, simulation could hang. The code

8

below is one such application, where a timing construct is included inside a
forever statement.

forever example.v

1 module forever_example ();

2

3 reg clk;

4

5 initial begin

6 #1 clk = 0;

7 forever begin

8 #5 clk = !clk;

9 end

10 end

11

12 initial begin

13 $monitor ("#%g clk = %b",$time , clk);

14 #100 $finish;

15 end

16

17 endmodule

4.2 The repeat Statement

The repeat loop executes statements for a fixed number of times.

repeat example.v

1 module repeat_example ();

2 reg [3:0] opcode;

3 reg [15:0] data;

4 reg temp;

5

6 always @ (opcode or data)

7 begin

8 if (opcode == 10) begin

9 // Perform rotate

10 repeat (8) begin

11 #1 temp = data[15];

12 data = data << 1;

13 data[0] = temp;

14 end

15 end

16 end

17 // Simple test code

18 initial begin

19 $display (" TEMP DATA");

20 $monitor (" %b %b ",temp , data);

21 #1 data = 18’hF0;

22 #1 opcode = 10;

9

23 #10 opcode = 0;

24 #1 $finish;

25 end

26

27 endmodule

4.3 The while loop Statement

The while loop executes as long as an expression evaluates as true. This is the
same as in any other programming language.

while example.v

1 module while_example ();

2

3 reg [5:0] loc;

4 reg [7:0] data;

5

6 always @ (data or loc)

7 begin

8 loc = 0;

9 // If Data is 0, then loc is 32 (invalid value)

10 if (data == 0) begin

11 loc = 32;

12 end else begin

13 while (data[0] == 0) begin

14 loc = loc + 1;

15 data = data >> 1;

16 end

17 end

18 $display ("DATA = %b LOCATION = %d",data ,loc);

19 end

20

21 initial begin

22 #1 data = 8’b11;

23 #1 data = 8’b100;

24 #1 data = 8’b1000;

25 #1 data = 8’b1000_0000;

26 #1 data = 8’b0;

27 #1 $finish;

28 end

29

30 endmodule

4.4 The for loop Statement

The for loop is the same as in any other programming language:

• Executes an initial assignment once at the start of the loop.

10

• Executes the loop as long as an expression evaluates as true.

• Executes a step assignment at the end of each pass through the loop.

for example.v

1 module for_example ();

2

3 integer i;

4 reg [7:0] ram [0:255];

5

6 initial begin

7 for (i = 0; i < 256; i = i + 1) begin

8 #1 $display(" Address = %g Data = %h",i,ram[i]);

9 ram[i] <= 0; // Initialize the RAM with 0

10 #1 $display(" Address = %g Data = %h",i,ram[i]);

11 end

12 #1 $finish;

13 end

14

15 endmodule

11

	Experiment A
	Experiment B
	Experiment C
	The Conditional Statement if-else
	The Case Statement

	Experiment D
	The forever Statement
	The repeat Statement
	The while loop Statement
	The for loop Statement

